jueves, 27 de noviembre de 2014

Torsión de la fl exión del codo - I

Considere el diagrama de cuerpo libre de la extremidad superior con el codo a 90° de la fi gura 4.7. Hay tres músculos involucrados en la fl exión del codo: braquio-bíceps, braquio-radial y braquial (vea la fi gura 4.1). Sin embargo, el bíceps es el fl exor principal y para los propósitos de este ejemplo, es el único músculo que se muestra, y también puede considerarse como un músculo equivalente que combina las características de los tres músculos. (Observe que una solución de los tres músculos en forma independientes no es factible debido a una condición llamada indeterminancia estática.) El músculo equivalente se inserta aproximadamente a 2 pulgadas adelante del punto de rotación del codo. El antebrazo pesa aproximadamente 3 libras en un hombre promedio y el peso puede considerarse que actúa en el centro de gravedad del antebrazo, aproximadamente 4 pulgadas (0.33 pies) adelante del codo. La mano sostiene una carga desconocida L a una distancia de 11 pulgadas (0.92 pies) respecto al codo. La máxima carga que puede sostenerse está determinada por la torsión máxima de fl exión voluntaria del codo, la cual para el 50avo percentil en el hombre es de 57 pies-libra (vea la tabla 4.1). En la posición de equilibrio estático que se muestra en la fi gura 4.7, la torsión en sentido contrario al de las manecillas del reloj de 57 pies-libra está balanceada por otras dos torsiones en el sentido de las manecillas del reloj, una para el peso de la extremidad inferior y otra para la carga:
Resolviendo la ecuación obtenemos L = 60.9 libras. Por lo tanto, la máxima carga que un hombre promedio puede levantar mediante la fl exión del codo es aproximadamente de 61 libras. Sería interesante calcular cuánta fuerza debe ejercer un músculo equivalente para levantar esta carga. La torsión máxima voluntaria es producida por una fuerza muscular conocida Fbíceps que actúa a través de un brazo con un impulso de 2 pulgadas (0.167 pies).

miércoles, 26 de noviembre de 2014

martes, 25 de noviembre de 2014

PERMANEZCA POR DEBAJO DEL 15% DE LA MÁXIMA FUERZA VOLUNTARIA - I

La fatiga muscular es un criterio muy importante, pero poco utilizado para diseñar tareas adecuadas para el operario humano. El cuerpo humano y el tejido muscular dependen principalmente de dos tipos de fuentes de energía, la aeróbica y la anaeróbica (consulte la siguiente sección que trata acerca del Trabajo Manual). 
 el metabolismo anaeróbico puede suministrar energía sólo por un periodo muy pequeño, el oxígeno suministrado a las fi bras musculares a través del fl ujo sanguíneo periférico se convierte en un aspecto crítico para determinar cuánto tiempo durarán las contracciones musculares. Desafortunadamente, a medida que las fi bras musculares se contraen de una manera más fuerte, se comprimen más las arteriolas y capilaridades entrelazadas (vea la fi gura 4.2), y a medida que se restringen más los suministros de fl ujo sanguíneo y oxígeno, las fatigas musculares serán más rápidas. 
El resultado es la curva de resistencia que se muestra en la fi gura 4.8. La relación es marcadamente no lineal y varía desde un tiempo de resistencia muy corto de alrededor de 6 segundos a una máxima contracción, en cuyo punto la fuerza muscular disminuye drásticamente hasta un tiempo de resistencia muy indefi nido de alrededor de 15% de una contracción máxima.

lunes, 24 de noviembre de 2014

UTILIZACIÓN DE LOS MÚSCULOS GRANDES PARA LAS TAREAS QUE REQUIEREN FUERZA

La fuerza muscular es directamente proporcional al tamaño del músculo, como lo defi ne el área de la sección transversal [específi camente, 87 psias (60 N/cm2) tanto en el caso de hombres como de mujeres] (Ikai y Fukunaga, 1968). Por ejemplo, los músculos de las piernas y del tronco deben utilizarse para levantar cargas muy pesadas, en lugar de usar los músculos más débiles de los brazos. El factor postural, aunque de alguna manera determinado por los cambios geométricos del impulso muscular o brazo de palanca, está relacionado con la longitud en reposo de las fi bras musculares que están en el rango medio del movimiento en la mayoría de las articulaciones, como quedó establecido en el primer principio de la economía de movimientos.

domingo, 23 de noviembre de 2014

DISEÑO DE TAREAS PARA OPTIMIZAR LA CAPACIDAD DE ESFUERZO HUMANA - II

Figura 4.6 Posiciones de resistencia estática y resultados de 443 hombres, 108 mujeres. (Chaffi n et al., 1977.)

sábado, 22 de noviembre de 2014

DISEÑO DE TAREAS PARA OPTIMIZAR LA CAPACIDAD DE ESFUERZO HUMANA - I

La capacidad de esfuerzo humana depende de tres factores principales de la tarea: 1) el tipo de esfuerzo, 2) el movimiento del músculo o articulación que se esté utilizando, y 3) la postura. Existen tres tipos de esfuerzos musculares, que se defi nen principalmente por la forma en que se mide la resistencia del esfuerzo. 
Los esfuerzos musculares que resultan en movimientos corporales son consecuencia del esfuerzo dinámico. Con frecuencia, dichos esfuerzos se llaman contracciones isotónicas, debido a que los segmentos de carga y de cuerpo levantados nominalmente conservan una fuerza externa constante en el músculo. (Sin embargo, la fuerza interna producida por el músculo varía debido a la geometría del impulso efectivo de los brazos.) 
Debido a las diferentes variables involucradas en dichas contracciones, algunas de ellas necesitan obligadamente ser restringidas con el fi n de obtener un esfuerzo medible. Por lo tanto, las mediciones del esfuerzo dinámico se han realizado típicamente mediante el empleo de dinamómetros de velocidad constante (isocinéticos) como, por ejemplo, el Cybex o el Mini-Gym (Freivalds y Fotouhi, 1987). 
En el caso donde el movimiento del cuerpo es restringido, se obtiene un esfuerzo isométrico o estático. Como se puede observar en la fi gura 4.5, el esfuerzo isométrico es necesariamente mayor que el esfuerzo dinámico debido a la conexión más efi ciente de los fi lamentos musculares de desplazamiento más bajos.
En la tabla 4.1 se muestran algunos esfuerzos musculares isométricos representativos de varias posturas mientras que en la fi gura 4.6 se muestran esfuerzos de levantamiento representativos de 551 trabajadores de la industria en diferentes posturas.
Por lo general, la mayoría de las tareas industriales involucra algún movimiento; por lo tanto, las contracciones totalmente isométricas son raras. Por lo normal, la gama de movimientos es limitada de alguna manera, y la contracción dinámica no es en realidad una contracción isocinética, sino que es un conjunto de contracciones cuasicinéticas. 
Por lo tanto, los esfuerzos dinámicos son en gran medida dependientes de la tarea y de la condición y se ha publicado muy poco respecto a los datos del esfuerzo dinámico. Por último, un tercer tipo de capacidad de esfuerzo muscular, el esfuerzo psicofísico, se defi ne para aquellas situaciones en las que se requieren demandas de esfuerzo durante un tiempo prolongado. Una capacidad estática de esfuerzo no es representativa por necesidad de lo que sería repetitivamente posible en un turno de 8 horas. 
Por lo general, la carga máxima aceptable (determinada mediante el ajuste de la carga levantada o fuerza ejercida hasta que el sujeto sienta que la carga o fuerza sería aceptable con base en repeticiones por un periodo determinado) es entre 40 y 50% menor que el esfuerzo estático una sola vez. Se han elaborado tablas extensivas de los esfuerzos psicofísicos con varias frecuencias y posturas (Snook y Ciriello, 1991). Un resumen de estos valores se proporciona en las tablas 4.2, 4.3 y 4.4.

viernes, 21 de noviembre de 2014

UTILICE EL IMPULSO PARA AYUDAR A LOS EMPLEADOS SIEMPRE QUE SEA POSIBLE; MINIMÍCELO SI ES CONTRARRESTADO POR ESFUERZO MUSCULAR

Existe una concesión entre los principios segundo y tercero. Los movimientos más rápidos generan un mayor impulso y mayores fuerzas de impacto en el caso de los codos. Los movimientos hacia abajo son más efi caces que los movimientos hacia arriba, debido a la ayuda que proporciona la fuerza de gravedad. Para hacer un uso total del impulso que se forma, las estaciones de trabajo deben permitir que los operarios liberen una parte terminada en un área de entrega mientras sus manos estén en el proceso de tomar las partes o las herramientas para comenzar el ciclo de trabajo siguiente.