domingo, 23 de noviembre de 2014

DISEÑO DE TAREAS PARA OPTIMIZAR LA CAPACIDAD DE ESFUERZO HUMANA - II

Figura 4.6 Posiciones de resistencia estática y resultados de 443 hombres, 108 mujeres. (Chaffi n et al., 1977.)

sábado, 22 de noviembre de 2014

DISEÑO DE TAREAS PARA OPTIMIZAR LA CAPACIDAD DE ESFUERZO HUMANA - I

La capacidad de esfuerzo humana depende de tres factores principales de la tarea: 1) el tipo de esfuerzo, 2) el movimiento del músculo o articulación que se esté utilizando, y 3) la postura. Existen tres tipos de esfuerzos musculares, que se defi nen principalmente por la forma en que se mide la resistencia del esfuerzo. 
Los esfuerzos musculares que resultan en movimientos corporales son consecuencia del esfuerzo dinámico. Con frecuencia, dichos esfuerzos se llaman contracciones isotónicas, debido a que los segmentos de carga y de cuerpo levantados nominalmente conservan una fuerza externa constante en el músculo. (Sin embargo, la fuerza interna producida por el músculo varía debido a la geometría del impulso efectivo de los brazos.) 
Debido a las diferentes variables involucradas en dichas contracciones, algunas de ellas necesitan obligadamente ser restringidas con el fi n de obtener un esfuerzo medible. Por lo tanto, las mediciones del esfuerzo dinámico se han realizado típicamente mediante el empleo de dinamómetros de velocidad constante (isocinéticos) como, por ejemplo, el Cybex o el Mini-Gym (Freivalds y Fotouhi, 1987). 
En el caso donde el movimiento del cuerpo es restringido, se obtiene un esfuerzo isométrico o estático. Como se puede observar en la fi gura 4.5, el esfuerzo isométrico es necesariamente mayor que el esfuerzo dinámico debido a la conexión más efi ciente de los fi lamentos musculares de desplazamiento más bajos.
En la tabla 4.1 se muestran algunos esfuerzos musculares isométricos representativos de varias posturas mientras que en la fi gura 4.6 se muestran esfuerzos de levantamiento representativos de 551 trabajadores de la industria en diferentes posturas.
Por lo general, la mayoría de las tareas industriales involucra algún movimiento; por lo tanto, las contracciones totalmente isométricas son raras. Por lo normal, la gama de movimientos es limitada de alguna manera, y la contracción dinámica no es en realidad una contracción isocinética, sino que es un conjunto de contracciones cuasicinéticas. 
Por lo tanto, los esfuerzos dinámicos son en gran medida dependientes de la tarea y de la condición y se ha publicado muy poco respecto a los datos del esfuerzo dinámico. Por último, un tercer tipo de capacidad de esfuerzo muscular, el esfuerzo psicofísico, se defi ne para aquellas situaciones en las que se requieren demandas de esfuerzo durante un tiempo prolongado. Una capacidad estática de esfuerzo no es representativa por necesidad de lo que sería repetitivamente posible en un turno de 8 horas. 
Por lo general, la carga máxima aceptable (determinada mediante el ajuste de la carga levantada o fuerza ejercida hasta que el sujeto sienta que la carga o fuerza sería aceptable con base en repeticiones por un periodo determinado) es entre 40 y 50% menor que el esfuerzo estático una sola vez. Se han elaborado tablas extensivas de los esfuerzos psicofísicos con varias frecuencias y posturas (Snook y Ciriello, 1991). Un resumen de estos valores se proporciona en las tablas 4.2, 4.3 y 4.4.

viernes, 21 de noviembre de 2014

UTILICE EL IMPULSO PARA AYUDAR A LOS EMPLEADOS SIEMPRE QUE SEA POSIBLE; MINIMÍCELO SI ES CONTRARRESTADO POR ESFUERZO MUSCULAR

Existe una concesión entre los principios segundo y tercero. Los movimientos más rápidos generan un mayor impulso y mayores fuerzas de impacto en el caso de los codos. Los movimientos hacia abajo son más efi caces que los movimientos hacia arriba, debido a la ayuda que proporciona la fuerza de gravedad. Para hacer un uso total del impulso que se forma, las estaciones de trabajo deben permitir que los operarios liberen una parte terminada en un área de entrega mientras sus manos estén en el proceso de tomar las partes o las herramientas para comenzar el ciclo de trabajo siguiente.

jueves, 20 de noviembre de 2014

ALCANCE LA MÁXIMA RESISTENCIA MUSCULAR CON MOVIMIENTOS LENTOS

El segundo principio de la capacidad humana se basa en otra propiedad de la teoría de los fi lamentos deslizantes y la contracción muscular. A medida que las uniones moleculares se forman, rompen y reforman, la unión es menos efi ciente y se produce la menor fuerza muscular. Éste es un efecto no lineal pronunciado (vea la fi gura 4.5) donde la fuerza muscular máxima se produce sin un acortamiento medible externamente (es decir, a velocidad cero o contracción estática), y a una mínima fuerza muscular que está siendo producida a la velocidad máxima de la contracción del músculo. La fuerza es sufi ciente para desplazar la masa de ese segmento del cuerpo. Esta propiedad muscular, que se conoce como relación fuerza-velocidad, es particularmente importante para el trabajo manual pesado.
Figura 4.4 Típica postura relajada que asume la gente en condiciones sin peso. (De: Thornton, 1978, fi gura 16.)

miércoles, 19 de noviembre de 2014

PRINCIPIOS DE DISEÑO DEL TRABAJO: CAPACIDADES HUMANAS Y ECONOMÍA DE LOS MOVIMIENTOS

LOGRE LA MÁXIMA FORTALEZA MUSCULAR A LA MITAD DEL RANGO DE MOVIMIENTO 

El primer principio de la capacidad humana se deriva de la propiedad de U-invertida de la contracción muscular que se muestra en la fi gura 4.3. A la longitud de reposo, se presenta la conexión óptima entre los fi lamentos grueso y delgado, lo cual da como resultado una fuerza muscular considerablemente disminuida (casi cero). 
De manera similar, en estado totalmente contraído, se presenta interferencia entre los fi lamentos delgados opuestos, lo que otra vez evita una conexión óptima y una disminución de la fuerza muscular. Esta propiedad muscular se llama típicamente relación fuerzalongitud. Por lo tanto, una tarea que requiera una fuerza muscular considerable debe realizarse en la posición óptima. 
Por ejemplo, la posición neutral o recta proporciona la fuerza de sujeción más grande a los movimientos de muñecas. Para la fl exión del codo, la posición más fi rme sería con el codo doblado en una posición mayor a 90°. Para una fl exión de las plantas (es decir, para liberar un pedal), de nuevo la posición óptima es ligeramente mayor a 90°. 
Una regla práctica para encontrar el rango medio del movimiento es considerar la postura que toma un astronauta en condiciones de peso nulo cuando tanto los músculos agonistas como los antagonistas alrededor de la articulación están muy relajados y la extremidad alcanza una posición neutral (vea la fi gura 4.4).

martes, 18 de noviembre de 2014

SISTEMA MÚSCULO-ESQUELÉTICO - figuras

Figura 4.2 Estructura del
músculo.
(De: Anatomía de Gray, 1973, con
el permiso de W. B. Saunders Co.,
Londres)

sábado, 15 de noviembre de 2014

SISTEMA MÚSCULO-ESQUELÉTICO

El cuerpo humano puede generar movimientos debido a un complejo sistema de músculos y huesos que, en conjunto, se llama sistema músculo-esquelético. Los músculos están conectados a los huesos junto a toda articulación (vea la fi gura 4.1), de tal manera que uno o varios de ellos, llamados agonistas, actúan como los principales activadores del movimiento. Otros músculos, llamados antagonistas, contrarrestan a los agonistas y se oponen al movimiento. 
Para fl exionar el codo, lo cual representa una disminución del ángulo interno de la articulación, los músculos bíceps, braquiorradial y el braquial forman al agonista, mientras que el tríceps forma al antagonista. Sin embargo, para extenderlo, lo cual representa un aumento del ángulo de la articulación, el tríceps se convierte en el agonista mientras que los otros tres músculos conforman el antagonista. En el cuerpo humano existen tres tipos de músculos: músculos esqueléticos o estriados, los cuales están conectados a los huesos; músculo cardiaco, que está en el corazón; y músculo plano, que se encuentra en los órganos internos y en las paredes de los vasos sanguíneos. En este texto sólo se estudiarán los músculos esqueléticos (de los cuales existen alrededor de 500 en el cuerpo humano), debido a su relevancia para el movimiento. Cada músculo está formado por un gran número de fi bras musculares, de alrededor de 0.004 pulgadas (0.1 mm) de diámetro y cuya longitud varía entre 0.2 y 5.5 pulgadas (5 a 140 mm), dependiendo del tamaño del músculo. 
Por lo general, dichas fi bras están conectadas entre sí en paquetes a través de tejido conectivo, el cual se extiende hasta los extremos de los músculos y ayuda para conectar fi rmemente el músculo y sus fi bras al hueso (vea la fi gura 4.2). Estos paquetes son penetrados por pequeños vasos sanguíneos que transportan oxígeno y nutrientes a las fi bras musculares, así como también por pequeñas terminaciones nerviosas que transportan impulsos eléctricos del cordón espinal y del cerebro. Cada fi bra muscular se subdivide en miofi brillas más pequeñas y fi nalmente en fi lamentos proteicos que proporcionan el mecanismo de contracción. Existen dos tipos de fi lamentos: fi lamentos gruesos, compuestos por grandes proteínas con cabezas moleculares, llamadas miosina; y fi lamentos delgados, compuestos por proteínas globulares, llamados actina. 
El entrelazamiento de los dos tipos de fi lamentos les otorga la apariencia estriada y da origen a su nombre alterno, como se muestra en la fi gura 4.3. Esto permite que el músculo se contraiga a medida que los fi lamentos de deslizan unos sobre otros, lo cual se presenta a medida que se forman puentes moleculares o uniones, se rompen y se reforman entre las cabezas de miosina y los glóbulos de actina. Esta teoría del fi lamento deslizante explica por qué la longitud del músculo puede variar hasta aproximadamente el 50% de su longitud en reposo (la longitud no contráctil neutral en aproximadamente el punto medio del rango normal del movimiento) totalmente contraído, hasta 180% de su longitud en reposo cuando se encuentra totalmente extendido (vea la fi gura 4.3).